Original Russian Text Copyright © 2004 by V. Shchepin, Russkikh, Kalyuzhnyi, R. Shchepin, Vakhrin.

Reactions of Zinc Enolates of Substituted 1-Aryl-2,2-dibromobutanones with Alkyl Esters of 3-Oxo-3*H*-benzo[*f*]chromene-2-carboxylic Acid

V. V. Shchepin, N. Yu. Russkikh, M. M. Kalyuzhnyi, R. V. Shchepin, and M. I. Vakhrin

Perm State University, Perm, Russia

Received June 4, 2002

Abstract—Zinc enolates derived from substituted 1-aryl-2,2-dibromobutanones react with alkyl 3-oxo-3H-benzo[f]chromene-2-carboxylates to form alkyl 1-aroyl-1-ethyl-2-oxo-1,9c-dihydro-3-oxacyclopropa[c]-phenanthrene-1a-carboxylate as a single geometric isomer.

In the preceding short communication we reported that bromine-containing zinc enolates derived from substituted α , α -dibromobutyrophenones add by the double bond of methyl 6-bromo-2-oxochromene-2-carboxylate [1]. In the present work we studied the ability of these zinc enolates to react with alkyl 3-oxo-

3*H*-benzo[*f*]chromene-2-carboxylate (**III**). It was shown that zinc enolates **IIa**–**IIe** obtained from *para*-substituted 1-aryl-2,2-dibromobutanones **Ia**–**Ie** regiospecifically add to the double bond of substrates **IIIa**, **IIIb** to form intermediates **IVa**–**IVh** by the following scheme.

 $\textbf{I, II, } Ar = Ph \textbf{ (a), } 4\text{-MeC}_{6}H_{4}\textbf{ (b), } 4\text{-FC}_{6}H_{4}\textbf{ (c), } 4\text{-ClC}_{6}H_{4}\textbf{ (d), } 4\text{-BrC}_{6}H_{4}\textbf{ (e). III, } R = Me \textbf{ (a), } Et \textbf{ (b). IV, V, } R = Me, Ar = Ph \textbf{ (a), } 4\text{-MeC}_{6}H_{4}\textbf{ (b), } 4\text{-FC}_{6}H_{4}\textbf{ (c), } 4\text{-ClC}_{6}H_{4}\textbf{ (d), } 4\text{-BrC}_{6}H_{4}\textbf{ (e); } R = Et, Ar = Ph \textbf{ (f), } 4\text{-ClC}_{6}H_{4}\textbf{ (g), } 4\text{-BrC}_{6}H_{4}\textbf{ (h). }$

Intermediates **IVa–IVh** undergo a spontaneous stereospecific cyclization to give alkyl 1-aroyl-1-ethyl-2-oxo-1,9*c*-dihydro-3-oxocyclopropa[*c*]phenanthrene-1*a*-carboxylates **Va–Vh** in high yields (see table).

The composition and structure of compounds **Va–Vh** were proved by their elemental analysis and ¹H and IR spectroscopy. The IR spectra contain characteristic absorption bands at 1675–1680, 1720,

and 1755–1760 cm⁻¹, belonging to aroyl, ester, and lactone carbonyls. The ¹H NMR spectra display characteristic signals at 4.03–4.10 ppm, s (CH), as well as alkoxycarbonyl and ethyl proton signals (see table). The aromatic protons absorb at 7.00–8.40 ppm. In particular, the methine proton gives a single singlet, implying that the products are formed as a single geometric isomer.

Yields, melting points, ${}^{1}H$ NMR spectra, and elemental analyses of alkyl 1-aroyl-1-ethyl-2-oxo-1,9c-dihydro-3-oxacyclo-propa[c]phenanthrene-1a-carboxylates Va-Vh

no	%	mp, °C	Solvent	¹ H NMR spectrum, δ, ppm			Found, %			Calculated, %	
Comp.	Yield,			СН	COOR	Et	С	Н	Formula	С	Н
Va	82	207–209	CDCl ₃	4.03 s	3.50 s (CH ₃)	~0.70–1.40, ~1.70– 2.40 m (CH ₂),	74.82	4.95	$C_{25}H_{20}O_5$	74.99	5.03
Vb	85	212–213	CDCl ₃	4.03 s	3.50 s (CH ₃)	0.33 t (CH ₃) ~0.70–1.40, ~1.70– 2.40 m (CH ₂), 0.33 t (CH ₃)	75.43	5.26	$C_{26}H_{22}O_5$	75.53	5.35
Vc	79	193–195	DMSO-d ₆	4.04 s	3.43 s (CH ₃)	~0.70–2.30 m (CH ₂), 0.33 t (CH ₃)	71.60	4.50	$C_{25}H_{19}FO_5$	71.76	4.58
Vd	83	240–242	DMSO-d ₆	4.10 s		~0.65–1.35, ~1.60– 2.35 m (CH ₂), 0.27 t (CH ₃)	68.89	4.32	C ₂₅ H ₁₉ ClO ₅	69.05	4.40
Ve	70	257–259	CDCl ₃	4.03 s	3.47 s (CH ₃)	~0.70–1.40, ~1.60– 2.30 m (CH ₂), 0.23 t (CH ₃)	62.60	3.97	$C_{25}H_{19}BrO_5$	62.64	3.99
Vf	80	191–192	CDCl ₃	4.07 s	3.98 q (CH ₂), 0.94 t (CH ₃)	~0.70–1.40, ~1.65– 2.40 m (CH ₂), 0.34 t (CH ₃)	75.22	5.30	C ₂₆ H ₂₂ O ₅	75.35	5.35
Vg	82	214–216	CDCl ₃	4.06 s	4.00 q (CH ₂), 1.00 t (CH ₃)	~0.75–1.45, ~1.65– 2.40 m (CH ₂), 0.37 t (CH ₃)	69.40	4.65	C ₂₆ H ₂₁ ClO ₅	69.56	4.72
Vh	71	222–223	CDCl ₃	4.04 s	3.99 q (CH ₂), 1.00 t (CH ₃)	~0.75–1.45, ~1.65– 2.40 m (CH ₂), 0.34 t (CH ₃)	63.21	4.23	C ₂₆ H ₂₁ BrO ₅	63.30	4.29

EXPERIMENTAL

The IR spectra were measured on a UR-20 spectrophotometer in mineral oil. The $^1\mathrm{H}$ NMR spectra were recorded in CDCl $_3$ and DMSO- d_6 on an RYa-2310 instrument (60 MHz), internal reference HMDS.

Alkyl 1-aroyl-1-ethyl-2-oxo-1,9c-dihydro-3-oxa-cyclopropa[c]phenanthrene-1a-carboxylates Va-Vh. A solution of 0.016 mol of 1-aryl-2,2-dibromobutanone Ia-Ie in 3 ml of ethyl acetate was added dropwise to 3 g of fine zinc turnings in 8 ml of ether and 5 ml of ethyl acetate. The mixture was heated until reaction began and then occurred spon-

taneously. After the reaction was complete, the mixture was heated for 20 min on a water bath, cooled, decanted from zinc into another flask, and a solution of 0.008 mol of compound **IIIa**, **IIIb** in 2–5 ml of HMPA was added to it. The resulting mixture was refluxed for 30 min, cooled, hydrolyzed with 5% HCl, extracted with diethyl ether, dried with Na_2SO_4 , the solvent was removed, and the reaction product was recrystallized from toluene–methanol.

REFERENCES

1. Shchepin, V.V., Kalyuzhnyi, M.M., and Shchepin P.V., *Khim. Geterotsikl. Soedin.*, 2001, no. 10, p. 1415.